If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-204x=0
a = 13; b = -204; c = 0;
Δ = b2-4ac
Δ = -2042-4·13·0
Δ = 41616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{41616}=204$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-204)-204}{2*13}=\frac{0}{26} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-204)+204}{2*13}=\frac{408}{26} =15+9/13 $
| 6(1/3x-2)-x=0 | | x+1/3(x+6)=22 | | x+1/3(x+6=22 | | 1,5(x-10)-x=0 | | (8x+1)-2x=124 | | 2×(5x-1)+3x=19 | | 2-t=6-2 | | x=x+ | | (-2x^2-6x+16x+48)(x^2-36)=0 | | 29/7x-8/3=13/4 | | 0.526(x+3800)=2150 | | 0.526(x+3000)=2150 | | 3x+8=200 | | 6.5+1.9n=1.94 | | 2(-6-3)=6(5m-1) | | 5-b÷3=2 | | 7n-9=3 | | 2x+4=20ç | | x^-1/2=15 | | -0.006v=0.135 | | 5/3=n/2 | | 5/3=2/n | | s+5/7=-1/2 | | ×-5/2y=19/2 | | y-28.8=-39.0 | | -(x^2+2x+1)=-50 | | -(x^2+2x+1)=50 | | y-1.97=-14.8 | | 19-3x=x+7 | | 10+5y=10y−20 | | 11m+7=4m | | x+2x=33*5 |